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Introduction

Scattering of microwave signals from rough surfaces has been extensively studied [1-3].
However, a vast majority of such studies is on the characteristics of the normalized scatter-
ing cross section. This paper is an investigation of the statistical characteristics of scattered
signals. When the area of illumination is large it is seen that the scattering from a rough
surface may be considered to be contributions from a large number of individual cells. One
may hence appeal to the central limit theorem and show that the amplitude of the scattered
signal satisfies the Rayleigh distribution. This observation was first made by Rayleigh a
hundred years ago for the general case of randomly scattered signals. Beckmann demon-
strated that similar arguments and deductions may be employed for the case of scattering
from rough surfaces. It is apparent that certain conditions are necessary to deduce that
the amplitude statistics are Rayleigh distributed. When such conditions do not exist the
amplitude statistics are not Rayleigh and in such situations we would like to know which
statistical distribution is most representative. It has been found that the K-distribution [4] is
a good model for randomly scattered signals. We consider this and some other appropriate
non-Rayleigh statistical distributions. For our study we use numerically simulated signals
scattered from a randomly rough surface. We employ the moment method to estimate the
parameters of the various distributions. We next use Kolmogorov-Smirnov statistic to de-
termine which of the distributions most closely fit the simulated data.

Description of the Problem

We have a perfectly conducting randomly rough surface given as z = {(x) which is planar
on the average. { is a zero-mean stationary random process independent of y. For TE case
the incident field is taken as E; = yE;, where

1
E; = exp{ik(xsin6; — zcos 6;)[1 + u(r)]} exp {——2(x + ztan Qi)} , (D)
w
w denotes the width of the Gaussian beam, and
(kwcos 6;)% | w

u(r) = ;{%(x+ztan0i)2 - 1}. 2)

Equation (1) describes a Gaussian beam often used in numerical simulations. For the TM
case we have H; = $H; where H; is identical to the E; in (1). Our main interest is in studying
the statistical characteristics of the fields scattered by the rough surface.
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Formulation

The reduced wave equations for time-harmonic waves are
VE+k°E=0 V?H + K*H = 0, 3)

where k is the free space wave number. Since the surface is independent of y the polarization
of the incident waves is preserved on scattering. Therefore E = $F and H = yH. Thus we
have the following scalar Helmholtz equations for TE and TM cases respectively,

VZE+KE =0 V2H + K*H = 0. “4)
The boundary condition on the PEC surface is Z X E = 0 on the surface S. This implies that
E(ry) =0 0,H(rg) =0 ry €S, ©)

for TE and TM cases, where 9, H is the normal derivative on the surface S. Employing
the Green’s theorem we convert the differential equation system into the following integral
equation system:

E(r) = Ei(r) - fdr’G(r’,r)&n/E(r’) H(r) = Hi(r) + fdr’H(r’)anfG(r’,r). (6)
S s

The essential task is to evaluate the surface fields d,F and H which are governed by the
following integral equations:

OnE(ry) = 20,Ei(ry) — 2 JC dr'0,G(r', r5)0 E(r'), (N
S

H(ry) = 2H,(ry) + chr’H(r’)an/G(r’,rs). 8)
s

The bar across the integral sign denotes that the integral is a principal value integral. We
employ the forward-backward algorithm [5,6] to obtain numerical solutions to the above
integral equations. Inserting these solutions in (6) we calculate the bistatic scattering coeffi-
cients. Proceeding thus we carried out numerical simulations based on Pierson-Moskovitz
surface spectrum for various surface conditions, beam widths, and angles of incidence and
observation.

Statistical Characteristics of Scattered Waves

Simulated results thus obtained are valuable for understanding the nature and characteris-
tics of various asymptotic approximations. Further, the procedure provides comprehensive
statistics of scattered signals. One important quantity of interest is the probability density
function (pdf) of the amplitude of scattered signals. The pdf of signals scattered from a ran-
dom collection of scatterers has been investigated by Rayleigh. For the case of a randomly
rough surface this problem was studied by Beckmann. The idea is to formulate the problem
as a random walk process and assume that the surface is composed of contributions from
a large number of independent individual cells. From this one can deduce that the distri-
bution of amplitudes of scattered signals is Rayleigh distributed. However, this derivation
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is based on several assumptions and when they are violated we depart from Rayleigh sta-
tistics. There are several non-Rayleigh statistical distributions that have been postulated
for such situations. Some of these are lognormal, Weibull, K-distribution, and modified
K-distributions. The modified K-distributions are extensions of the K-model, obtained by
using different functions to describe the texture. For our study we have considered the
gamma texture, log-normal texture and the inverse gamma texture. The pdfs of the statisti-
cal models cited above are:

Log-normal:
1 I (s
f(S) = s\/ﬁ exp {—T‘J In ((—5)} for s >0
Weibull: X
C— C
f(s) = CZC exp{— (159) } for s >0

K-distribution:

f(s) = ﬂ{ 4—Vs} K, {\/gs} for s >0
2v-1T(v) M Iz

Generalized K - gamma texture:

_ 2br (v e Vb2 s (v )
o=tk ‘”‘P{?‘(;T)}‘“

Generalized K - Log-normal texture:

S 2 §2 1 T
S
) 2770-2]0‘ 72 exp{T 202 n 2m } T

Generalized K - Inverse gamma texture:

258l (a + 1)

I = Ga s her@

The Rayleigh distribution has a one parameter pdf. All the rest have two parameter pdfs.
We use the first two moments to determine these parameters from the simulated data using
Pearson moments method. Let 6 and 8, be the two parameters and let i; and u be the first
two moments for a particular model. If s, is the amplitude of the simulated scattered signal
corresponding to the n-th realization, then the moments may be calculated as

1 k
n=1

where N, is the number of realizations considered for the study. Then
(01, 02) = my k=1,2

is the pair of equations to be solved to determine the parameters.
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This is a fairly simple and straightforward procedure. However, there is no information as
to whether the parameters thus obtained will be unbiased and efficient. Fisher’s maximum
likelihood estimation method guarantees efficiency although it is not as simple to implement
as the moments method. Let the N, variate density function be fy,. Then the likelihood
function is fx,(s1, 52, , Sn,|61,62). The parameters 6; and 6, are determined by solving
0p, fn, = 0 and 0y, fy. = 0. The next obvious question is which pdf most closely fits our
simulated data. To compare the data with a particular model it is more convenient to use
the cumulative distribution function (cdf). Denoting the proposed cdf as F(s), and that
composed by using the computed data as F.(s), we calculate the Kolmogorov-Smirnov
statistic D = sup|F.(s) — F(s)|. To gauge the pdf under consideration we calculate the
probability that D is larger than the observed value, which is given as

0.11
Prob (D > observed value) = ({ N, +0.12 + }D)
o1V o

where

0 =2 ) (1Y e T,

=1

Calculating this probability for the various proposed distributions enables us to choose the
one that best fits the data for the particular situation. On carrying out this procedure we
find that the pdf that fits the data best varies with angles of incidence and observation,
beam-width of illumination and surface characteristics. Only for angles close to normal is
the Rayleigh pdf appropriate. There is no one pdf that suits all situations. We find that
different regions and situations require different pdfs. Certain pdfs are more suitable for
certain situations than others.
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